Crystal Structure of the New Thorium Intermetallics Thin and $\mathrm{Th}_{6} \mathrm{Cd}_{7}$

M. L. FORNASINI,* A. PALENZONA, AND P. MANFRINETTI
Istituto di Chimica Fisica, Università di Genova, Corso Europa, Palazzo delle Scienze, 16132 Genoa, Italy

Received July 25, 1983

Abstract

The title phases are orthorhombic: ThIn, $o P 24$, space group $P b c m, a=10.806(3) \AA, b=9.954(4) \AA, c$ $=6.520(4) \AA, Z=12 ; \mathrm{Th}_{6} \mathrm{Cd}_{7}, o P 26$, space group Pbam, $a=11.703(3), \AA, b=9.929(7) \AA, c=6.041(2)$ $\AA, Z=2$. Direct methods were used for both structure solutions on data collected with an automated single crystal X-ray diffractometer. Anisotropic refinements gave $R=0.065$ for ThIn and $R=0.086$ for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ using 799 and 1015 reflections, respectively. The structure of ThIn is closely related to the hexagonal $\mathrm{Ti}_{5} \mathrm{Ga}_{4}$ type, from which it can be geometrically derived. $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ can be regarded as a tetrahedrally close packed structure where the Th atoms present the typical CN 14, CN 15, and CN 16 Frank-Kasper polyhedra and the Cd atoms are icosahedrally coordinated.

Introduction

For several years we have studied the thermodynamic and crystallographic data of binary intermetallic compounds of thorium. The aim of this work is to provide a complete crystallochemical data set in order to compare thorium with the rare earth and alkaline earth metals so that the influence of the change in valence electron concentration, in passing from tetra- to tri- and divalent elements, on the existence, stability, and structure of the intermediate phases may be studied.

The lack of information concerning the $\mathrm{Th}-\mathrm{Cd}$ and $\mathrm{Th}-\mathrm{In}$ systems (1) led us to completely redetermine these two phase diagrams. In the Th-Cd system six intermediate compounds were found, five of which were identified, while a "ThCd" phase, close to the equiatomic composition,

[^0]showed an unknown structure (2). A similar situation has also been found in the $\mathbf{T h}-$ In system where the structure of ThIn, one of the four present phases, remained unresolved (3). In this paper we report the results of the crystal structure determination of these two new phases, $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ and ThIn.

Experimental and Structure Determination

No particular difficulties were encountered in the preparation of the samples. Fine turnings of the pure elements (Th $\mathbf{9 9 . 5 \%}, \mathrm{Cd}$ and In 99.99% from Koch-Light, England) were well mixed, pressed together, closed in molybdenum crucibles, and allowed to react at high temperature (about 1673 K for ThIn and 1373 K for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$) following the indications of the phase diagrams. The alloys were annealed for a short time a few degrees below the decomposition or the melting point. Toimprove
the formation of single crystals for structural determination the samples were prepared at a composition a little different from the stoichiometric one: $52.5 \mathrm{at} . \% \mathrm{Th}$ for ThIn and 48.5 at. $\%$ Th for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$.

Special care must be taken because of the very high reactivity of these alloys with moist air. As found in many other systems of thorium the reactivity is highest around the equiatomic composition: the samples decompose very rapidly and are often pyrophoric.

To avoid oxidization during the examination of the crystals, small fragments of each were put in vaseline oil, previously dried over metallic sodium and evacuated 24 hr at 373 K . Single crystals of the two compounds, sealed in glass capillaries under vacuum, were mounted on an Enraf-Nonius CAD-4 automatic diffractometer. The lattice constants were determined by leastsquares refinement of 25 high-angle reflections measured using graphite-monochromated $\operatorname{Mo} K \alpha$ radiation ($\lambda=0.71069 \AA$).

The crystal of ThIn $(0.03 \times 0.05 \times 0.19$ mm) have orthorhombic symmetry with a $=10.806(3) \AA, b=9.954(4) \AA, c=6.520(4)$
\AA, and extinctions ($0 k l, k \neq 2 n ; h 0 l, l \neq 2 n$) consistent with the space groups $\mathrm{Pca2}_{1}$ and Pbcm.

The crystal of $\mathrm{Th}_{6} \mathrm{Cd}_{7}(0.07 \times 0.18 \times 0.30$ mm) also have orthorhombic symmetry with $a=11.703(3) \AA, b=9.929(7) \AA, c=$ $6.041(2) \AA$, and extinctions ($0 k l, k \neq 2 n$; $h 0 l, h \neq 2 n$) consistent with the space groups Pba2 and Pbam.

For both crystals intensities of two octants were collected in the $\omega-\vartheta$ scan mode up to $2 \vartheta=60^{\circ}$. Owing to the strong absorption effect ($\mu=103 \mathrm{~mm}^{-1}$ for ThIn and 102 mm^{-1} for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$) and the irregular shape of the crystals, both the spherical correction and the semi-empirical correction based on the azimuthal scan data of several top reflections (4) were applied. The independent reflections were 1104 for ThIn and 1115 for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$.

Each structure was solved in the corresponding centrosymmetric space group by direct methods with SHELX 76 (5) and refined by full-matrix least squares based on F 's using reflections with $F_{o}>3 \sigma\left(F_{0}\right)$ and weight $w=1 / \sigma^{2}\left(F_{0}\right)$. The atomic scattering factors and corrections for anomalous dis-

TABLE I
Atomic Coordinates, Isotropic Equivalent, and Anisotropic ($\times 10^{3}$) Thermal Parameters

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Thin (Pbcm)										
$\mathrm{Th}(1)$ in $4(d)$	0.8810(2)	0.4680(3)	0.25	0.015(1)	10(1)	19(1)	16(1)	0	0	O(1)
$\mathrm{Th}(2)$ in $4(d)$	0.3097(2)	0.3703(3)	0.25	0.016(1)	11(1)	22(1)	17(1)	0	0	1(1)
$\mathrm{Th}(3)$ in $4(c)$	0.6143(2)	0.25	0	0.021(1)	11(1)	35(2)	16(1)	$0(1)$	0	0
In(1) in $4(d)$	0.8585(4)	$0.1330(5)$	0.25	0.018(2)	11(2)	21(2)	23(2)	0	0	$-1(2)$
In(2) in $4(d)$	0.4158(5)	0.0450(6)	0.25	0.030(3)	15(2)	26(3)	49(4)	0	0	0 (2)
In(3) in 4(c)	0.0698(4)	0.25	0	0.018(2)	12(2)	21(2)	21(2)	1(2)	0	0
$\mathrm{Th}_{6} \mathrm{Cd}_{7}(\mathrm{Pbam})$										
$\mathrm{Th}(1)$ in 4(h)	0.0835(2)	0.1622(3)	0.5	0.030(1)	36(1)	12(1)	41(1)	0	0	1(1)
$\mathrm{Th}(2)$ in $4(h)$	0.1297(2)	0.5477(3)	0.5	0.028(1)	36(1)	10(1)	37(1)	0	0	-1(1)
Th(3) in 4(g)	0.0453(2)	0.3413(3)	0	$0.027(1)$	36(1)	8(1)	36(1)	0	0	0 (1)
$\mathrm{Cd}(1)$ in $8(i)$	0.1830(4)	0.8416(5)	$0.2566(8)$	0.034(2)	45(2)	13(2)	44(2)	0 (2)	1(2)	-3(2)
$\mathrm{Cd}(2)$ in $4(\mathrm{~g})$	0.2510(6)	0.0942(7)	0	$0.035(2)$	47(3)	9(2)	48(3)	0	0	2(2)
$\mathrm{Cd}(3)$ in $2(a)$	0	0	0	0.019(3)	25(3)	1(3)	30(3)	0	0	1(2)

Notes. The thermal factors are expressed as $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\ldots+2 U_{12} h k a^{*} b^{*}\right)\right] . U_{\mathrm{eq}}=(1 / 3)\left(U_{11}\right.$
$\left.+U_{22}+U_{33}\right)$. The esd's are given in parentheses.

Fig. 1. Projection of the structures of ThIn and $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ along the c axis.
persion were taken from International Tables for X-Ray Crystallography (6). The final anisotropic refinement converged at R $=0.065$ for ThIn (799 reflections, 35 parameters) and $R=0.086$ for $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ (1015 reflections, 38 parameters).

Table I lists the positional and thermal parameters of the two compounds. ${ }^{1}$

Discussion

The structures of ThIn and $\mathrm{Th}_{6} \mathrm{Cd}_{7}$, which represent new types, are characterized by the alternation along the short c axis ($\sim 6 \AA$) of densely and scarcely populated layers of atoms, c/4 apart. Projection of the two structures along this axis is shown in Fig. 1.

In ThIn all layers have 1:1 composition. Nets formed by two kinds of very distorted hexagons are found at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ and their nearly antisymmetric stacking generates two kinds of polyhedra centered by $\mathrm{Th}(3)$ and $\operatorname{In}(3)$. These atoms form nets with Schläfli symbol 3^{6} at $z=0$ and $z=\frac{1}{2}$.

[^1]TABLE II
Interatomic Distances in Thin up to $3.8 \AA$ for In-In and up to $4.4 \AA$ for All Other Distances ${ }^{a}$

$\operatorname{Th}(1)-\operatorname{In}(1)$	3.26	$\operatorname{Th}(2)-\operatorname{In}(1)$	3.18
$-2 \operatorname{In}(3)$	3.29	$-2 \operatorname{In}(3)$	3.29
$-\operatorname{In}(2)$	3.30	$-\operatorname{In}(2)$	3.44
$-\operatorname{In}(1)$	3.34	$-\operatorname{In}(2)$	3.44
$-2 \operatorname{In}(3)$	3.40	$-2 \operatorname{In}(2)$	3.56
$-2 \operatorname{In}(1)$	3.42	$-2 \operatorname{Th}(3)$	3.86
$-2 \operatorname{Th}(3)$	3.96	$-2 \operatorname{Th}(2)$	4.05
$-2 \operatorname{Th}(2)$	4.18	$-2 \operatorname{Th}(1)$	4.18
$-2 \operatorname{Th}(1)$	4.20	$-2 \operatorname{Th}(3)$	4.20
$\operatorname{Th}(3)-2 \operatorname{Th}(3)$	3.26	$\operatorname{In}(1)-2 \operatorname{In}(3)$	3.04
$-2 \operatorname{In}(1)$	3.31	$-\operatorname{Th}(2)$	3.18
$-2 \operatorname{In}(2)$	3.37	$-\operatorname{Th}(1)$	3.26
$-2 \operatorname{In}(2)$	3.38	$-2 \operatorname{Th}(3)$	3.31
$-2 \operatorname{Th}(2)$	3.86	$-\operatorname{Th}(1)$	3.34
$-2 \operatorname{Th}(1)$	3.96	$-2 \operatorname{Th}(1)$	3.42
$-2 \operatorname{Th}(2)$	4.20		
$\operatorname{In}(2)-\operatorname{Th}(1)$	3.30	$\operatorname{In}(3)-2 \operatorname{In}(1)$	3.04
$-2 \operatorname{Th}(3)$	3.37	$-2 \operatorname{In}(3)$	3.26
$-2 \operatorname{Th}(3)$	3.38	$-2 \operatorname{Th}(2)$	3.29
$-\operatorname{Th}(2)$	3.44	$-2 \operatorname{Th}(1)$	3.29
$-\operatorname{Th}(2)$	3.44	$-2 \operatorname{Th}(1)$	3.40
$-2 \operatorname{Th}(2)$	3.56		

[^2]In $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ two pentagon-triangle main layers, containing either Th and Cd atoms or Th only, are stacked in such a way that pentagons of one layer cover those of the other antisymmetrically, and are interleaved by Cd secondary nets with Schläfli symbol $3^{2} 434$.

Inspection of the interatomic distances reported in Table II and Table III gives another point of similarity: in both structures short Th-Th distances are present, $3.26 \AA$ in ThIn and $3.18 \AA$ in $\mathrm{Th}_{6} \mathrm{Cd}_{7}, 9$ and 12%, respectively, smaller than the metallic diameter of Th after Teatum et al. (7). Analogous short $\mathrm{Th}-\mathrm{Th}$ distances were found in other phases of the Th-Sn (8) and

TABLE III
Interatomic Distances in $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ UP to $4.9 \AA^{a}$

$\mathrm{Th}(1)-2 \mathrm{Cd}(1)$	3.45	Th(2)- Th(2)	3.18
$-2 \mathrm{Th}(3)$	3.53	$-2 \mathrm{Cd}(1)$	3.33
- Th(2)	3.54	-2Cd(1)	3.34
$-2 \mathrm{Cd}(3)$	3.56	-2Cd(2)	3.36
$-2 \mathrm{Cd}(1)$	3.58	- Th(1)	3.54
$-2 \mathrm{Cd}(2)$	3.66	-2Th(3)	3.78
-2Cd(1)	3.69	- Th(1)	3.81
- Th(1)	3.77	-2Th(3)	3.81
- Th(2)	3.81	- Th(1)	3.87
- Th(2)	3.87		
		$\mathrm{Cd}(1)-\mathrm{Cd}(1)$	2.94
$\mathrm{Th}(3)-\mathrm{Th}(3)$	3.33	- $\mathrm{Cd}(2)$	3.01
- Cd(3)	3.43	- Cd(2)	3.05
- Cd(2)	3.44	- Cd(3)	3.08
- Cd(2)	3.46	- Cd(1)	3.10
- Cd(2)	3.50	- Th(2)	3.33
-2Th(1)	3.53	- Th(2)	3.34
$-2 \mathrm{Cd}(1)$	3.54	- Th(1)	3.45
$-2 \mathrm{Cd}(1)$	3.58	- Th(3)	3.54
$-2 \mathrm{Th}(2)$	3.78	- Th(1)	3.58
-2Th(2)	3.81	- $\operatorname{Th}(3)$	3.58
		- Th(1)	3.69
$\mathrm{Cd}(2)-2 \mathrm{Cd}(1)$	3.01		
$-2 \mathrm{Cd}(1)$	3.05	Cd(3)-4Cd(1)	3.08
- Cd(3)	3.08	$-2 \mathrm{Cd}(2)$	3.08
-2Th(2)	3.36	-2Th(3)	3.43
- Th(3)	3.44	-4Th(1)	3.56
- Th(3)	3.46		
- Th(3)	3.50		
-2Th(1)	3.66		

[^3]$\mathrm{Th}-\mathrm{Pb}$ (9) systems, namely, in $\mathrm{Th}_{5} \mathrm{Sn}_{3}$ and $\mathrm{Th}_{5} \mathrm{~Pb}_{3}$ with the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure (3.24 and $3.26 \AA$, respectively) and in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ and $\mathrm{Th}_{5} \mathrm{~Pb}_{4}$ with a filled-up $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure, $\mathrm{Ti}_{5} \mathrm{Ga}_{4}$ type (3.22 and $3.29 \AA$, respectively).

The atomic arrangements of ThIn and $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ show a close relationship. In Table IV the distances in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ are given for a comparison. The coordination polyhedra around $\operatorname{Th}(2)$, $\mathrm{Th}(3)$, and $\operatorname{In}(2)$ in ThIn are identical to those around $\operatorname{Th}(2), \mathrm{Th}(1)$, and $\mathrm{Sn}(2)$ in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$, respectively, with $\operatorname{In}(2)$ and $\mathrm{Sn}(2)$ presenting the same tricapped trigonal prism formed by nine thorium atoms. Moreover, the polyhedron of $\mathrm{Th}(1)$ in ThIn is very similar to that of $\mathrm{Th}(2)$ in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$, but with a pair of Th replaced by two In atoms, and $\operatorname{In}(3)$ resembles somewhat $\mathrm{Sn}(1)$, having six Th arranged as a distorted octahedron, capped by two In atoms, but with a face enlarged to allow contact with two other In. On the other hand, the coordination around $\operatorname{In}(1)$ is completely different. It is surrounded by a very distorted Th pentagonal bipyramid with insertion of two further In atoms.

The similarity between the two structures of ThIn and $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ can be seen in Fig. 2, where the polyhedra of $\operatorname{Th}(1)$ and $\mathrm{Th}(2)$

TABLE IV

Interatomic Distances in $\mathrm{Th}_{5} \mathrm{Sn}_{4}\left(\mathrm{Ti}_{5} \mathrm{Ga}_{4}\right.$ type) up to $3.9 \AA$ for $\mathrm{Sn}-\mathrm{Sn}$ and UP To $4.5 \AA$ for All Other Distances ${ }^{a}$

$-2 \operatorname{Sn}(2)$	3.37
$-4 \operatorname{Th}(1)$	3.85
$-4 \operatorname{Th}(2)$	4.20

${ }^{a}$ esd's are less than $0.01 \AA$.

Thin

$\mathrm{Th}_{5} \mathrm{Sn}_{4}$

Fig. 2. Coordination polyhedra around $\mathrm{Th}(1)$ (stippled) and $\mathrm{Th}(2)$ in ThIn , and around $\mathrm{Th}(2)$ in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$.
in ThIn and $\mathrm{Th}(2)$ in $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ are drawn. To facilitate the comparison, the $\operatorname{Th}(1)$ polyhedra of ThIn and some of the Th(2) polyhedra of $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ are stippled. A possible mechanism to obtain the structure of ThIn can be devised by cutting the cell of the hexagonal $\mathrm{Th}_{5} \mathrm{Sn}_{4}$ along the dashed line, shifting the lower half cell of the quantity $a \sqrt{3} / 3$ in the [210] direction and replacing a pair of Th with two In atoms in the upper stippled polyhedra. These operations destroy the hexagonal symmetry and lead to a different stoichiometry.

The structure of the phase $\mathrm{Th}_{6} \mathrm{Cd}_{7}$ can be classified as a tetrahedrally close packed Frank-Kasper structure. It is well known that this family is characterized by the presence of interpenetrating coordination polyhedra with 12 (icosahedron), 14,15 , or 16 vertices and triangular faces, which originate a distorted tetrahedral packing of atoms with good space filling. Indeed, $\mathrm{Th}(1)$, $\mathrm{Th}(2)$, and $\mathrm{Th}(3)$ show the $\mathrm{CN} 16, \mathrm{CN} 14$, and CN 15 Frank-Kasper polyhedron, respectively, whereas $\mathrm{Cd}(1), \mathrm{Cd}(2)$, and $\mathrm{Cd}(3)$ are icosahedrally surrounded (CN 12).

It is interesting to note that a structure with this composition was first foreseen by the same Frank and Kasper (10) and later by Shoemaker and Shoemaker (11), and by Kripyakevich (12). In particular, Kripyakevich classified this hypothetic structure in the homologous series obtained by combining fragments of the $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ type and the Laves phase MgZn_{2}, and also predicted the correct space group.

References

1. P. Chiotti, V. V. Akhachinskis, I. Ansara, and M. H. Rand, "The Chemical Thermodynamics of Actinide Elements and Compounds," Part 5, IAEA, Vienna (1981).
2. A. Palenzona and S. Cirafici, J. Less-Common Met. 77, 215 (1981).
3. A. Palenzona, P.Manfrinetti, and S. CiraFici, J. Less-Common Met., to be published.
4. A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr. Sect. A 24, 351 (1968).
5. G. M. Sheldrick, SHELX 76: A Program for Crystal Structure Determination, Univ. of Cambridge, England.
6. "International Tables for X-ray Cyrstallography," Vol. IV, Kynoch, Birmingham, England (1974).
7. E. Teatum, K. Gschneidner, and J. Waber, LA-2345, U.S. Dept. of Commerce, Washington, D.C. (1960).
8. S. Cirafici, A. Palenzona, and P. Manfrinetti, J. Less-Common Met. 90, 49 (1983).
9. A. Palenzona, S. Cirafici, and P. Manfrinetti, J. Less-Common Met. 92, 85 (1983).
10. F. C. Frank and J. S. Kasper, Acta Crystallogr. 12, 483 (1959).
11. C. B. Shoemaker and D. P. Shoemaker, in "Developments in the Structural Chemistry of AIloy Phases," (B. C. Giessen, Ed.), p. 107, Plenum, New York (1969).
12. P. I. Kripyakevich, Sov. Phys. Crystallogr. 15, 596 (1971).

[^0]: * To whom all correspondence should be addressed.

[^1]: ${ }^{1}$ Lists of observed and calculated structure factors can be obtained from the authors on request.

[^2]: ${ }^{a}$ esd's are less than $0.01 \AA$.

[^3]: ${ }^{a}$ esd's are less than $0.01 \AA$.

